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ABSTRACT 

The flow conditions related to a cascade of vanes supported on cables and moving in a 

continuous horizontal loop transverse to an open channel flow, are analysed. The energy 

and continuity equations for open channel flow are used to relate flow conditions 

upstream and downstream of the vanes and the Euler turbine equation is used to express 

the energy transfer from the flow to the vanes. Values for the force on a cascade of 

vanes set at various angles and depths in an open channel flow are calculated by the 

theory and found to show reasonable agreement with experimental results. The 

theoretical performance of a two stage linear turbine is calculated over a range of vane 

speeds and the maximum theoretical output determined. 

 

NOMENCLATURE

C  = average flow velocity 

E  = specific energy 

F  = force 

g  = gravitational constant 

h  = depth of flow 

k  = function of   and q  

P  = power per unit width of upstream 

flow 

q  = flow per unit width of upstream flow 

Q  = volume rate of flow 

S  = vane spacing 

U  = vane speed 

V  = average flow velocity relative to 

vanes 

w  = vane channel width 

  = average flow angle to direction at 

right angles to direction of U  

(+ve when tC  in direction of U ) 

  = angle of relative flow velocity to 

direction at right angles to 

direction of U  (+ve when tV  in 

direction of U ) 

  = density of flow 

 



Subscripts 

1  = stage 1 

2  = stage 2 

c   = critical flow conditions 

i   = conditions at inlet to vane channel 

o   = conditions at outlet to vane channel 

t   = velocity component in direction 

transverse to upstream flow 

max  = maximum value 

min  = minimum value 

 

INTRODUCTION 

The system discussed in this paper is called a linear turbine due to its similarity to an 

axial flow turbine of infinite rotor diameter. It consists of a cascade arrangement of 

vanes supported on cables and moving in a continuous horizontal loop transverse to an 

open channel flow. 

Interest in this type of system arises from the need, especially in developing countries, 

for a simple, inexpensive means of harnessing the seasonal low head energy potential of 

rivers and canals. The open channel flow linear turbine is well suited to this application 

since, due to low flow loadings and simple design, it can be constructed from 

inexpensive, locally available materials such as wood, bamboo, rope, etc., using local 

manpower. Also since its configuration allows for simple length adjustment to suit river 

width, and does not require extensive site preparation, it can be easily relocated and 

modified to suit seasonal flow conditions. 

The principle of the linear turbine is similar to that of the tracked vehicle system studied 

by Powe [1], the lift translator system of Schneider [2], and the free wing turbine 

system of Goggins [3]. However, in all these systems the vanes are completely 

immersed in the working fluid (air or water) and design conditions can be approximated 

by airfoil theory and axial flow turbine theory, with axial velocity assumed to remain 

constant. With the open channel flow system considered in this paper the flow depth 

and axial velocity vary continuously from upstream to downstream and are governed by 

open channel flow conditions, hence analysis of the flow conditions involves a 

combination of open channel flow theory and axial flow turbine theory. 

To date the authors have been unable to locate any design data covering these 

conditions and this paper is an attempt at developing a basic theory to enable an 

assessment of the feasibility of a linear turbine system for application to rivers, canals, 

etc. . 

 



PRINCIPLE AND LAYOUT 

The layout of the linear turbine is shown in Fig. 1. The two continuous loop cables pass 

around wheels at each end and support the vanes which are immersed in the channel 

flow. Due to the angle of the vanes the flow is obstructed and deflected causing an 

increase in depth upstream of the vanes and a reaction force on the vanes. This force is 

restrained by the tension in the supporting cables and the transverse component rotates 

the wheels which are used to drive either a generator for electricity or a pump for 

irrigation. On passing around the wheels the vanes swing freely to take up the opposite 

attitude to the flow, thus providing a further positive driving force in the opposite 

direction. 

The energy available to the system is the difference in energy between the upstream and 

downstream flows and theoretically the greater the obstruction to the flow, and hence 

deeper the upstream flow, the greater the energy available. In practice however this will 

depend on the strength of the turbine components and the allowable increase in river 

depth at the site. 

For maximum utilization of the available energy, the flow immediately downstream of 

the vanes should have minimum energy. This condition corresponds to critical flow 

which is the conditioning pertaining to uniform flow in open channels. 

 

 
Fig.1 Layout of the linear turbine 

CHANNEL FLOW 

To analyse the system the flow conditions upstream, through the vanes, and 

downstream must be determined. As a first approximation these conditions can be 



considered similar to those of in viscid open channel flow in a rectangular channel for 

which the energy equation can be written as [4]: 

hgCE  2/2                              (1) 

and the continuity equation as: 

hCq                                   (2) 

The conditions for critical flow (minimum flow energy) can be found by differentiating 

the energy equation with respect to h  and equating to zero. The critical depth and 

velocity can then be expressed as: 

2/13/12 )(;)/( ccc ghCgqh                      (3) 

and in terms of the minimum energy: 
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Available energy. Based on these expressions for channel flow the energy available to 

the turbine is: 

availableE  = upstream flow energy – downstream flow energy for critical flow 

  = min
2 2/ EhgC ii                                          (5) 

Maximum utilization of this energy requires flow deflection, by the upstream and 

downstream vanes, and flow velocities to be at optimum values. Flow deflection and 

velocity however are limited by conditions for critical flow in the vane channels. 

Critical flow width. For in viscid flow the energy of the relative flow through the vane 

channels can be considered constant. The energy equation for this flow can be written 

as: 
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Graphs of h  and V  versus w  for constant Q  and E  are given in Fig. 2. These figures 

show that for constant Q and E  there is a minimum flow width. At this minimum 

width the depth and velocity correspond to the critical depth ch  and critical velocity cV . 

Any further reduction in width results in a reduction in flow. 

For subcritical flows, decreasing the width results in a reduction in depth and increase in 

velocity. For supercritical flows, decreasing the width results in an increase in depth and 

a decrease in velocity. This situation is similar to that found in gas dynamics with flow 

through a nozzle, supercritical and subcritical corresponding to supersonic and subsonic 

respectively. In nozzle flow the critical flow width (or area) produces choked flow with 

sonic velocity. 

 

Fig. 2 Variation of flow depth and velocity 

with width (E and Q constant) 

 
(a) Vane channel width  

and vane angle 

 

(b) Critical vane speed 

Fig. 3 Critical vane angle and speed 

Critical vane angles. The flow width through the vanes depends upon the vane outlet 

angle  o as shown in Fig. 3a. This relationship can be written as: 

oSw cos                                   (8) 



For critical conditions; 

)/( ccc hVQw                                 (9) 

∴  )/(cos ccc hVQS                                (10) 

and the critical angle is: 

))(/(cos 1
ccc hVq                             (11) 

This is the maximum angle that can be used. Any further increase in vane angle will 

block the flow, resulting in an increase in upstream depth. 

Critical vane speed. The vane speed is also limited by critical flow conditions in the 

vane channels. For constant flow conditions and vane angles the relative velocity 

through the vane channels depends upon the vane speed U . 

From Fig. 3b the vane speed U  can be written as: 

iiiii CCVU  sin)cos( 22                    (12) 

and for critical conditions: 

ici ghVV                                (13) 

∴  iiiiic CCghU  sin)cos( 2                (14) 

For subcritical relative flow at the inlet to the vane channels cU > U  and there is a 

maximum value of U  where U  = cU . 

With critical outlet conditions for the vane channels, the flow conditions upstream can 
be related to those downstream since the outlet depth oh  is the critical depth for the vane 

channel flow ch  and dependent only on q . However, for conditions other than critical 

the inlet and outlet conditions must be related by application of the energy and 

continuity equations to the relative flow through the vane channels. 

Relative flow through the vane channels. Ideal flow relative to the vane channels is 

represented by Fig. 4. The energy equation for this flow, at the inlet and outlet, can be 

written as: 



ooii hgVhgVE  2/2/ 22                  (15) 

By the continuity equation: 
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Substitute for iV  and oV  in the energy equation (15) gives: 
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These can be written as: 
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Fig. 4 Vane channel flow 

These equations are of the third degree and have three real roots of which one is 

negative and hence not relevant to the present flow situation. The two positive roots 

correspond to two different depths of flow and two different corresponding velocities. 



These two sets of values correspond to supercritical flow (large velocity, small depth) 

and subcritical flow (large depth, small velocity). This is discussed in reference [5]. 

To determine oh  for given values of E  and ok , equation (19) (for outlet conditions) is 

solved using Newton’s numerical method [6] by writing 

okEhhhf  23)(                            (21) 

Ehhhf
dh

hfd
23)(

)( 2                          (22) 

 

 

If a value 1h  is substituted in these equations then a value 2h  closer to the solution than 1h  is 

given by: 
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Substitution of the new value of 2h  for 1h  gives convergence on the root of the equation, ie. 

the value of oh . 

Once the value of oh  is known, then, with o  at some specified angle, the value for oV  

can be determined from equation (17), enabling the velocity diagrams for the upstream 

and downstream flow to be drawn. 

 

UPSTREAM AND DOWNSTREAM FLOW CONDITIONS 

The velocity diagrams representing the ideal flow conditions upstream and downstream 

of the vanes for the upstream vanes (stage 1), and the downstream vanes (stage 2), are 

shown in Fig.5 together with a representation of the flow depth through the stages. 

These diagrams are drawn for subcritical flow conditions with the stream wise 

component of velocity increasing, corresponding to a decrease in flow depth. For 

convergent flow through the vane passages the relative velocity oV  cannot exceed the 

critical velocity cV  and hence oC  is always less than the critical velocity downstream. 

Consequently, the outlet depth (and hence energy) is greater than the critical minimum 

value. This constitutes an energy loss to the turbine. 



 

               Upstream  

               (stage 1) 

Downstream  

(stage 2) 

Flow depth 

Fig. 5 Flow velocity diagrams and depth 

Relationships and sign convention. The outlet flow conditions are expressed in relation 

to the inlet flow conditions using the sign convention of positive flow angles for flows 

with transverse components in the direction of U . The relationship for stage 1 and stage 

2 flow conditions can be written as: 

Stage 1 conditions: 
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Stage 2 conditions: 

oi CC  (stage 1)     ;   oi   (stage 1)            (26) 
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From these expressions the energy transfer to the vanes can be determined. 

 



ENERGY TRANSFER 

The energy transfer per unit mass flow for each stage can be expressed by the Euler 

equation as: 

)( uoui CC
g

U
E                              (29) 

or in terms of vane angles and relative velocities as: 

)sinsin( ooii VV
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U
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For the stage 1 vanes, UV ii sin  and hence: 

)sin( ooVU
g

U
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For maximum energy transfer the magnitude of the term ooV sin  should be as large as 

possible ( o  is always negative). This will be the case if the outlet flow is critical with 

co VV   and co   , ie: 
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For critical flow conditions the stage 1 channel flow energy can be expressed as: 
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For optimum conditions the outlet flow from stage 2 should be as close as possible to 

the downstream conditions for minimum energy flow, ie. co hh  , co VV  , and 

co    and 0o . To obtain these optimum conditions requires selection of the 

appropriate upstream conditions by trail and error. 



Power output. This is the rate of energy transfer and hence for each stage: 

)sinsin( ooii VVqUP                          (36) 

For maximum power output the energy transfer should be a maximum and hence outlet 

conditions critical. 

 

FORCE ON THE VANES 

The force on the vanes is dependent on the pressure drop across the vanes and the rate 

of change of momentum of the flow through the vanes. In the direction transverse to the 

upstream flow the pressure remains constant and the force is given by: 

)sinsin( ooiit VVqF                        (37) 

For the stage 1 vanes, when 0U , from Fig. 5, ii CV  , oo CV  , 0i  and oo   , 

therefore                        oot qCF  sin1                           (38) 

From the stage 2 vanes, when 0U , ii CV   and ii   , hence from (26), 1oi CV   

and 1oi   , therefore from (37): 

                 )sin)(sin( 22112 oooot VCqF                      

221 sin oot qVF                           (39) 

The maximum force on the vanes will be when deflection is at the critical angle oc  and 

outlet conditions are critical. In this case, from (38): 

ococt qCF  sinmax1                        (40) 

giving critical inlet conditions to stage 2. 

ie.                           1212 ; ocioci CV                        (41) 

Hence for maximum force on the stage 2 vanes, 

122122 ; ocioocio CVV                  (42) 

therefore                           max1max2 2 tt FF                           (43) 

 

EXPERIMENTAL TESTS 

Test rig details. As a preliminary evaluation of the validity of the theory, a test rig 

consisting of a cascade of six vanes was made and suspended in a channel flow to 



obtain experimental values for tF  at different vane angles and depths. Details of the test 

rig arrangement are given in Fig. 6. 

 

Fig. 6 Details of test rig arrangement 

The vanes were set in the rig at specified angles for each test and vane depth was 

adjusted by vertical cables from the overhead bridge. The transverse force was 

measured by a hydraulic actuator (fitted with a pressure gauge) which was secured to 

the right bank of the channel. 

The vanes of the test rig were made from 12mm plywood 450mm wide by 900mm deep 

with a 40˚ bevel on the downstream side of the leading edge. The top and bottom ends 

were stiffened with 20mm x 20mm angle steel attached to the upstream side of the 

vanes. This angle was bolted to the test rig frame at the 1/3 chord position with a vane 

spacing of 400mm. The trailing edges of the vanes were tied together at top and bottom 

with two steel strips which could be locked at different positions to give a range of vane 

angle settings. 

Test measurements and accuracy. Flow velocity was measured with a propeller type 

flow meter positioned centrally 50mm upstream of the vanes and 250mm above the 

bottom level of the vanes. This meter had an accuracy of  0.05 m/s. The measured 

flow velocity was 1.3 0.05 m/s so true flow conditions were taken as 1.3 0.1 m/s. 

The alignment of the test rig to the channel flow was indicated by a 260mm wide plate 

fitted in place of the flow meter and pivoted at its leading edge with its trailing edge 

50mm upstream of the vanes. Alignment was measured to be 4˚ 1˚ over the range of 

tests and flow direction fluctuated  2˚. Consequently the actual vane angles to the flow 

for the four settings were 14˚ 3˚, 24˚ 3°,    34˚ 3˚, and 39˚ 3˚. 

The transverse load was measured at each vane angle setting for vane depths of 400mm, 



600mm, and 800mm. The bow wave in front of the vanes made it difficult to determine 

these depths to less than  50mm accuracy. Piston friction in the hydraulic actuator 

limited the load measurement accuracy to  250N. 

Since the vanes were mounted at the 1/3 chord position it was assumed that moments 

about the vanes due to the load force would be small and therefore, since the rig and 

cables were symmetrical, there would be little difference in cable tensions to effect the 

load measurements. 

Six vanes were used in the cascade to reduce the significance of the effect of the 

different flow conditions at each end. However, to be more certain about this effect, 

further tests need to be made with different numbers of vanes. 

 

Fig. 7 Theoretical and experimental values for the force on a cascade of 6 vanes at 0.4m 

spacing in a 1.3m/s flow (experimental error: force  250N, angle  3 degrees, 

                            : flow  0.1m/s, vane depth  50mm) 

RESULTS AND DISCUSSION 

The test results are plotted in Fig. 7 together with values predicted by the theory for 

vane depths ih  of 400, 600 and 800mm, a flow 3.1 iVC m/s and 1000 kg/m3 

(using equations 2, 15, 17, 19 and 38) for vane angles o  from zero up to the critical 

vane angle c . At greater vane angles the theory predicts choked flow with a 

consequent reduction in flow and decrease in force, or alternatively an increase in inlet 

depth to maintain the same flow. The continuing increase in force at vane angles above 

the critical, observed in the experimental results could be partly due to an increase in 

inlet depth which was difficult to maintain accurately. This effect would be more 

significant at the lower vane depths and this tends to agree with the results. Entrainment 

of flow into the channel from the mainstream flow below the vanes could also be 

contributing to the deviation from the theory. 

The experimental values for the 600 and 800mm depths tend to be higher than the 



theoretical values, especially at the higher vane angles. This deviation is possibly due to 

the deviation from ideal flow conditions in the channels, and around the end vanes of 

the cascade, due to boundary layer growth, separation, and uneven velocity distribution 

across the flow, which would all tend to reduce the effective flow area, resulting in 

higher outlet velocities and hence greater vane loads at subcritical flow conditions. 

From observation of the flow during the tests it is felt that with improved vane design, 

vane channel flows closer to the ideal flow conditions could be achieved, resulting in 

better agreement with the theoretical predictions. 

Since the channel flows analysed in the theory are relative flows it seems reasonable to 

expect that conditions with different values of vane speed could be simulated by a 

stationary cascade with different inlet flow velocities and alignment angles to the flow. 

If this is so, then the general agreement with the theory shown by the present test results 

suggests that predictions based on the theory for a linear turbine running at various vane 

speeds would also be valid. 

 

THEORETICAL PERFORMANCE PREDICTIONS 

Future plans are to construct a full size linear turbine, with a vane depth of 800mm, to 

operate in a channel flow similar to that used for the vane cascade tests (ie. 1.3m/s flow). 

To gain a rough estimate of the performance and design criteria for this turbine a 

computer program, based on the theory of this paper, was run with vane outlet angles at 

the critical values ( co   ) and varying values of vane speed. The results are given in 

Fig. 8. Force per meter was calculated from equation (37) using critical values for oV  

and o  determined from equation (35). Power per meter was calculated from equation 

(36). At 0U , for the conditions in Fig. 8, the theoretical value for c  from equation 

(35) is 43 degrees, and since this condition is close to the test result in Fig. 7 for the 

vanes at 800mm depth and 39 3 degrees vane setting, this value has been converted to 

force per meter and plotted in Fig. 8 for reference. 

The force per meter for stage 2 is shown in Fig. 8 to be twice that of stage 1 as predicted 

by equation (43) and this drops to the same value as for stage 1 at about U = 0.9m/s 

where the total power is at a maximum of 1.68kW/m. 

The upper limit of U  corresponds to the critical value of 2.48m/s determined from 

equation (14). 



 

Fig. 8 Theoretical values foe a 2 stage linear turbine with critical flow conditions at 

stage 1 and stage 2 outlets and upstream flow 1.3m/s and 800mm deep 

CONCLUSIONS 

Use of the equations for open channel flow and the Euler turbine equations enables 

construction of a basic mathematical model for prediction of the flow conditions 

through an open channel flow linear turbine. 

The general agreement of theoretical predictions, for the force on a vane cascade 

transverse to the upstream flow, with experimental results, suggests that the theory 

could be useful in determining design criteria for a linear turbine. 

Theoretical calculations for a linear turbine in a flow of 1.3m/s and 800mm deep predict 

a maximum power output of 1.68kW per meter transverse to the flow. 

Further tests are required with a variety of cascade arrangements and vane shapes, and 

also with linear turbines operating under various flow conditions, before the theory can 

be considered sound. 
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